US009323319B2

a2 United States Patent 10) Patent No.: US 9,323,319 B2
Sun (45) Date of Patent: Apr. 26, 2016
(54) MULTIPROCESSOR SYSTEM AND METHOD (56) References Cited
OF SAVING ENERGY THEREIN
U.S. PATENT DOCUMENTS
(75) Inventor: ~ Wei Sun, Tokyo (TP) 6,167,330 A * 122000 Linderman ... GOGF 11/3089
700/295
(73) Assignee: NEC Corporation, Tokyo (IP) 6,195,765 Bl * 2/2001 Kislanko GOG6F 11/3664
703/22
(*) Notice: Subject to any disclaimer, the term of this 6,877,087 BL* 4/2005 Yamada GO6F7 }/23/3(1)3
patent is extended or adjusted under 35 7,398,410 B2* 7/2008 Le€ ..occvvvivrvinrnnn.n. GO6F 1/3203
U.S.C. 154(b) by 305 days. 712/43
(21) Appl. No.: 14/129,841 FOREIGN PATENT DOCUMENTS
Tad- JP 01-239665 A 9/1989
(22) PCT Filed: Jun. 29, 2011 Ip 08006681 A 1/1996
Jp 2000-298593 A 10/2000
(86) PCT No.: PCT/JP2011/003733 Ip 2002-55731 A 2/2002
$371 ©() Jp 2003-337713 11/2003
c ’
(2), (4) Date: Dec. 27,2013 OTHER PUBLICATIONS
Anna R. Karlin, et al. “Competititve Randomized Algorithms for
(87) PCT Pub. No.: 'WO02013/001576 Non-Uniform Problems”, MIT, 2003, Chapter 33, pp. 301-309.
PCT Pub. Date: Jan. 3, 2013 (Continued)
(65) Prior Publication Data Primary Examiner — Stefan Stoynov
(74) Attorney, Agent, or Firm — Wilmer Cutler Pickering
US 2014/0129864 Al May 8, 2014 Hale and Dorr LLP
(51) Int.CL 57 ABSTRACT
GOG6F 1/32 (2006.01) A multiprocessor system comprises: a plurality of processors;
GOG6F 9/48 (2006.01) a counting, measuring and calculating (CMC) unit that deter-
(52) U.S.CL mines a generating rate of sleep tasks and a time length of
CPC ..., GO6F 1/3287 (2013.01); GO6F 1/3206 cach of the sleep tasks based on an acceptable delay; a sleep
(2013.01); GOG6F 1/329 (2013.01); GO6F task generator that generates the sleep tasks with the time
9/4843 (2013.01); GOGF 9/4893 (2013.01); length at the generating rate, and injects the generated sleep
GOGF 2209/483 (2013.01); YO2B 60/144 tasks into a traffic for original tasks; and a scheduler that
(2013.01); YO2B 60/32 (2013.01) assigns both the original tasks and the sleep tasks in the traffic
(58) Field of Classification Search to the plurality of processors, wherein each of the sleep tasks

CPC GOG6F 1/3287; GOGF 1/329; GOGF 1/3206;
GOGF 9/4843; GOGF 9/4893

See application file for complete search history.

Local Queues i

switches off one of the plurality of processors, on which the
sleep task is assigned.

18 Claims, 5 Drawing Sheets

Processor D]]]E _ Scheduler for both Original task traffic
original tasks and sleep tasks
/ 103

@@@ (TTTTTT]

Counting, Measuring
and Calculating Unit

@rocesscb
|

Generating Rate and
Sleep Task Length

v

Sleep task generator

US 9,323,319 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Chi-Hong Hwang, et al. “A Predictive System Shutdown Method for
Energy Saving of Event-Driven Computation”, IEEE, 1997, S pages.
Dinesh Ramanathan, et al. “System Level Online Power Manage-
ment Algorithms”, Center for Embedded Computer Systems, 2000, 6
pages.

Luca Benini, et al. “Policy Optimization for Dynamic Power Man-
agement”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 18, No. 6, Jun. 1999, pp. 813-833.

Mani B. Srivastava, et al. “Predictive System Shutdown and Other
Architectural Techniques for Energy Efficient Programmable Com-
putation”, IEEE Transactions on Very Large Scale Intergration Sys-
tems, vol. 4, No. Mar. 1996, pp. 42-55.

Qinru Qiu, et al. “Dymanic Power Management Based on Continu-
ous-Time Markov Decision Processes”, University of South Califor-
nia, 1999, 7 pages.

Tajana Simunic “Dynamic Management of Power Consumption” HP
Labs, Kluwer Academic Publishers, Jan. 2002, pp. 1-24.
International Search Report corresponding to International Applica-
tion No. PCT/JP2011/003733, Sep. 15, 2011, 1 page.

* cited by examiner

US 9,323,319 B2

Sheet 1 of 5

Apr. 26,2016

U.S. Patent

Fig. 1

lojeusuab ysey das|g

(S04)

yibua yse | das|g

b

€0l

e siey BUNEIBUSS

nun mczm"_:o_mo pue

<

0l

Bulnses|y ‘Buiuno)

(7o)

oijen n_‘wmw [eubuQ

sysel daaijs pue syse) |eulblo

4}0q Joj J3INPay2s

S
i

$oNANY (8007

10859201

10889201

10S$9201d

108892014

10889201

US 9,323,319 B2

Sheet 2 of 5

10C

yiBua yse | dealg 1088990.d

1o1eseuab ysey das|g puie ajey Buljeiauss

A

£0¢

S0c

nun Bunenoje) pue 108$920.1d

Buunseapy ‘Bununo)

<

10S$9201d

/

P0c [A174 >

108882014

. syse) dasa|s pue syse) |eulblio

Apr. 26,2016

Fig. 2

U.S. Patent

108899014

Jl4el} ysel A_‘mcaco il Uyloq 1oy IS|Npay2s
anany |1BgoIS)

US 9,323,319 B2

Sheet 3 of 5

Apr. 26,2016

U.S. Patent

Fig. 3

d 01 | aA0p

d 01 senanb Jaylo oy}
%SE] 1S8||1ES 8U] BAO]

ananb 18910ys 8}
01 3SE] MaU 8Y) puss

D 0) %SB} Mau ay} puag

¢Adwa s1 d Jossanold
Buipuodsallos ay

dA) swes ay; JO | yser Yy

a

d Ol ¥Se1 mau ay) pussg

A

Jainedaq Jo jBALLY

90¢

i d 10ss8230.44 Aldw3

A4

1UBA3 yse) e Bullieps

Loe

80¢

>%
;8dAl swes ayj
1e Buipus) snenb y

US 9,323,319 B2

Sheet 4 of 5

Apr. 26,2016

U.S. Patent

Fig. 4

ananb |eqolf ay)
JO |1} 8y 0} | yoeny

oLy

60¥

+.d 10ss200ud Aldwz

9

d 011 pusg

d 01 ananb |eqo|B 80v
ur YSe) 1S91|Jes ay) puss

d 0}.1puag

A

SOALLE] YSB} MBU

H

Jainueda(10 |eALLY

v

\A vov) (mo&/

0¥

Zananb |eqolB suj ui § |0
odA) aLes a4 Ul ,| YSE}

1 YSE] B $8YSIUl o J056890sd v

h

» JUsAB YSE] B Buiep

d

coy

Loy

U.S. Patent Apr. 26,2016 Sheet 5 of 5 US 9,323,319 B2

Fig. 5
Monitor State):
501
An arrival, a departure or a
502 time window is up
503 Update time window
504 Count the number of tasks in the

last time window and the total
number of tasks in the system

505 |

Calculate the number of sleep tasks which
should be generated and the average time
length of these sleep tasks according to
certain distributions

t J

US 9,323,319 B2

1

MULTIPROCESSOR SYSTEM AND METHOD
OF SAVING ENERGY THEREIN

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application of Interna-
tional Application No. PCT/JP2011/003733 entitled “Multi-
processor System and Method of Saving Energy Therein,”
filed on Jun. 29, 2011, the disclosures of which are hereby
incorporated by reference in their entirety.

TECHNICAL FIELD

The present invention relates to a multiprocessor system
and a method of saving energy in a multiprocessor system,
and more especially to a multiprocessor system with plural
local queues (distributed queue architecture) or with a global
queue (global queue architecture).

BACKGROUND

Power and energy consumption has become a serious prob-
lem in recent years. It is critical to battery-supported elec-
tronic devices, affordable datacenters, and low carbon envi-
ronments. Dynamic power management (DPM), one of the
main approaches of power saving, aims at reducing the power
consumption at the system level by selectively placing com-
ponents into low-power states.

NPL 2:

A. Karlin, M. Manesse, L. McGeoch, and S. Owicki, “Com-
petitive Randomized Algorithms for Nonuniform Prob-
lems,” Algorithmca, pp. 542-571, 1994.

NPL 3:

D. Ramanathan, R. Gupta, “System Level Online Power
Management Algorithms,” Design, Automation and Testin
Europe, pp. 606-611, 2000.

NPL 4:

C-H. Hwang and A. Wu, “A Predicative System Shutdown
Method for Energy Saving of Event-Driven Computation,”
International Conference on Computer Aided Design, pp.
28-32,1997.

NPL 5:

M. Srivastava, A. Chandrakasan, R. Brodersen, “Predicative
System Shutdown and Other Architectural Techniques for
Energy Efficient Programmable Computation,” IEEE
Transactions on VLSI Systems, vol. 4, no. 1, pp. 42-55,
March 1996.

NPL 6:

L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli,
“Policy Optimization for Dynamic Power Management,”
IEEE Transactions on Computer-Aided Design, vol. 18,
no. 6, pp. 813-833, June 1999.

NPL 7:

Q. Qiu and M. Pedram, “Dynamic Power Management Based
on Continuous-Time Markov Decision Processes,” Design
Automation Conference, pp. 555-561, 1999.

NPL 8:

T. Simunic, “Dynamic Management of Power Consumption,”
Power Aware Computing edited by R. Graybill and R.
Melhem, 2002.

SUMMARY

The entire disclosures of the above Non-Patent Literatures
(NPLs) are incorporated herein by reference thereto. The
following analyses are given from a viewpoint of the present
invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

Although low-power states cost minimum energy, the tran-
sitions between states require extra time and energy. Thus,
sophisticated power management policies at system level are
necessary to well make use of the DPM and otherwise both
performance and efficiency will deteriorate.

The most common power management policy at system
level is the timeout policy (NPLs 2 and 3) implemented in
most operating systems. The drawback of this policy is that
power and energy is wasted while waiting of timeout events.

Predictive policies (NPLs 4 and 5) developed for interac-
tive terminals force the transition to a low power state as soon
as a component becomes idle if the predictor estimates that
the idle period will last long enough. Obviously incorrect
estimates can cause both performance and energy penalties.

The policies based on stochastic models can guarantee
optimal results. Stochastic models use distributions to
describe system behaviors (NPLs 6-8). In other words, the
accuracy and the optimality heavily depend on whether sys-
tem behaviors meet the distributions. For example, inter-
arrival times and execution times may not follow exponential
distributions, which are assumed in all Markovian models.
Moreover, most stochastic policies are stationary (the same
policy applies at any point in time).

Therefore, there is a need in the art to provide a multipro-
cessor system and a method of saving energy consumption in
a multiprocessor system, with which power consumption is
reduced and the average response time of tasks can be con-
trolled.

According to a first aspect of the present invention, there is
provided a multiprocessor system comprising:

a plurality of processors;

a counting, measuring and calculating (CMC) unit that deter-
mines a generating rate of sleep tasks and a time length of
each of the sleep tasks based on an acceptable delay;

a sleep task generator that generates the sleep tasks with the
time length at the generating rate, and injects the generated
sleep tasks into a traffic of original tasks; and

a scheduler that assigns both the original tasks and the sleep
tasks in the traffic to the plurality of processors, wherein
each of the sleep tasks switches off one of the plurality of
processors, on which the sleep task is assigned.

According to a second aspect of the present invention, there
is provided a method of saving energy in a multiprocessor
system, comprising:
determining a generating rate of sleep tasks and a time length
of'each of the sleep tasks based on an acceptable delay;
generating the sleep tasks with the time length at the gener-
ating rate;
injecting the generated sleep tasks into a traffic of original
tasks; and
assigning both the original tasks and the sleep tasks in the
traffic to a plurality of processors, wherein
each of the sleep tasks switches off one of the plurality of
processors, on which the sleep task is assigned.

According to a further aspect, there is provided a program
for implementing the method or driving/executing the multi-
processor system according to the aspects aforementioned.
The program may be recorded on a computer-readable non-
transient medium which may result in a program product.

The present invention provides the following advantage,
but not restricted thereto. According to a multiprocessor sys-
tem and a method of saving energy in a multiprocessor of the
present invention, power consumption in the multiprocessor
system can be reduced and the average response time of tasks
can be controlled.

US 9,323,319 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a multiprocessor
system in a distributed queue architecture according to an
exemplary embodiment.

FIG. 2 is a block diagram illustrating a multiprocessor
system in a global queue architecture according to the exem-
plary embodiment.

FIG. 3 is a flow chart illustrating an operation of a sched-
uler for distributed queue architecture in the exemplary
embodiment.

FIG. 4 is a flow chart illustrating an operation of a sched-
uler for global queue architecture in the exemplary embodi-
ment.

FIG. 5is a flow chat illustrating an operation of a CMC unit
and a sleep task generator in the exemplary embodiment.

PREFERRED MODES

In the present disclosure, there are various possible modes,
which include the following, but not restricted thereto. The
following terms are used in the description.

1. State “On”: an active state in which processors run in full
speed

2. State “Off””: an low-power state in which processors may
sleep fully or run in low speed

3. Transfer: state transfer from “On” to “Off” or “Off” to
“On™

4. Transfer time: the time needed by the state transfer

5. Transfer energy: the energy needed by the state transfer

6. Task: an amount of computations

Note that only medium or heavy task traffic is considered in
the present invention, because it is trivial to deal with light
traffic.

In a multiprocessor system, tasks arrive at and depart from
a central scheduler. Basically such a system can be approxi-
mately represented by queuing models and the performance
in equilibrium is concerned.

In a multiprocessor system according to the present inven-
tion, power management is performed, which can reduce
energy consumption through smartly switching some proces-
sors off in the multiprocessor system. The present invention
aims at properly switching off some processors, i.e., having
some processors in the state “off”, in order to save power
consumption and meanwhile the average response time of
tasks should be in control. The state transfer frequency is kept
low, because the extra time and energy are needed in the state
transfer.

In the multiprocessor system according to the present
invention, sleep tasks, namely, virtual tasks which do nothing
but merely switch processors off, are created and injected into
the original task traffic. The following two steps are per-
formed in the multiprocessor system. First, the amount of
sleep tasks within a period of time is decided in terms of a
queuing model. Second, the injected sleep tasks are appropri-
ately assigned to processors without greatly increasing the
response time of original tasks and with avoiding frequent
state transfer.

Here, an overview of the present invention is described.
The reference numerals added here are merely to help under-
standing the description. Note that the present invention is not
limited to the mode shown in the figures. With reference to
FIGS. 1 and 2, the multiprocessor system according to the
present invention comprises: a plurality of processors (101,
201); a counting, measuring and calculating (CMC) unit
(103,203) that determines a generating rate of sleep tasks and
atime length of each of the sleep tasks based on an acceptable

10

15

20

25

30

35

40

45

50

55

60

65

4

delay; a sleep task generator (105, 205) that generates, at the
generating rate, the sleep tasks with the time length, and
injects the generated sleep tasks into a traffic of original tasks;
and a scheduler (104, 202) that assigns both the original tasks
and the sleep tasks in the traffic to the plurality of processors,
wherein each of the sleep tasks switches off one of the plu-
rality of processors, on which the sleep task is assigned.

According to a multiprocessor system of the present inven-
tion, power consumption in the multiprocessor system can be
reduced and the average response time of tasks can be con-
trolled.

Inthe present disclosure, there are various possible modes,
which include the following, but not restricted thereto.

(Mode 1)

There is provided a multiprocessor system according to the
first aspect of the present invention.

(Mode 2)

Inthe multiprocessor system, the CMC unit may determine
the generating rate and the time length so that inter-arrival
times and execution times of both the original tasks and the
sleep tasks follow predetermined distributions for the queu-
ing model.

(Mode 3)

Inthe multiprocessor system, the CMC unit may determine
the acceptable delay in accordance with an average response
time of the original tasks.

(Mode 4)

In the multiprocessor system, the scheduler may try to
reduce transitions of the plurality of processors between an on
state and an off state.

(Mode 5)

In the multiprocessor system, the sleep tasks may be a
virtual task that does nothing but only switches off one of the
plurality of processors, on which the task is assigned; and the
sleep tasks may have the same statistics as the original tasks.

(Mode 6)

The multiprocessor system may further comprise a plural-
ity of'local queues, each of which holds at least a part of the
original tasks and the sleep tasks.

(Mode 7)

Inthe multiprocessor system, if there is an empty processor
in the plurality of processors, the scheduler may send a new
task to the empty processor; and if there is no empty processor
in the plurality of processors, the scheduler may send the new
task to one of the plurality of local queues, in which the last
task is of the same type with the new task.

(Mode 8)

The multiprocessor system may alternatively comprise a
global queue that holds the original tasks and the sleep tasks.

(Mode 9)

In the multiprocessor system, if a task is finished in one of
the plurality of processors, the scheduler may send to the
processor the earliest task of the same type in the global
queue.

(Mode 10)

In the multiprocessor system, the CMC unit may measure
execution time of finished original tasks, count the number of
the original tasks and calculate an arrival rate and a distribu-
tion of the original tasks within a period of time.

(Mode 11)

Inthe multiprocessor system, the CMC unit may determine
the generating rate so that the inter-arrival time of both the
original tasks and the sleep tasks to follow a predetermined
distribution.

US 9,323,319 B2

5

(Mode 12)

In the multiprocessor system, the CMC unit may determine
the generating rate of the sleep tasks in accordance with a
measurement result of an arrival rate of the original tasks.

(Mode 13)

In the multiprocessor system, the CMC unit may determine
the time length of the sleep tasks in accordance with a mea-
surement result of the recently finished tasks.

(Mode 14)

There is provided a method of saving energy in a multipro-
cessor system according to the second aspect of the present
invention.

(Mode 15)

In the method of saving energy in a multiprocessor system,
the generating rate and the time length may be determined so
that inter-arrival times and execution times of both the origi-
nal tasks and the sleep tasks follow predetermined distribu-
tions for the queuing model.

(Mode 16)

The method of saving energy in a multiprocessor system
may further comprise determining the acceptable delay in
accordance with an average response time of the original
tasks.

(Mode 17)

The method of saving energy in a multiprocessor system
may further comprise trying to reduce transitions of the plu-
rality of processors between an on state and an off state.

(Mode 18)

In the method of saving energy in a multiprocessor system,
the sleep tasks may be a virtual task that does nothing but only
switches off one of the plurality of processors, on which the
task is assigned; and the sleep tasks may have the same
statistics as the original tasks.

(Mode 19)

There is provided a program for implementing the method
or driving/executing the multi-processor system according to
the modes aforementioned. The program may be recorded on
a computer-readable non-transient medium which may result
in a program product. The program may be used at least partly
implementing the steps of the method or operating the ele-
ments of the system.

Exemplary Embodiment

A multiprocessor-system according to an exemplary
embodiment is described with reference to the drawings.

FIG. 1 is a block diagram illustrating a multiprocessor
system in a distributed queue architecture. With reference to
FIG. 1, the multiprocessor system comprises a plurality of
processors 101, a plurality of local queues 102, a counting,
measuring and calculating (CMC) unit 103, a sleep task gen-
erator 105 and a scheduler 104. The CMC unit 103 determines
a generating rate of sleep tasks and a time length of each of the
sleep tasks. The sleep task generator 105 generates sleep tasks
with the time length at the generating rate, and injects the
generated sleep tasks into a traffic of original tasks. The
scheduler 104 assigns both the original tasks and the sleep
tasks in the traffic to the local queues 102.

FIG. 2 is a block diagram illustrating a multiprocessor
system in a global queue architecture. With reference to FIG.
2, the multiprocessor system comprises a plurality of proces-
sors 201, a global queue 204, a counting, measuring and
calculating (CMC) unit 203, a sleep task generator 205 and a
scheduler 202. The CMC unit 203 determines a generating
rate of sleep tasks and a time length of each of the sleep tasks.
The sleep task generator 205 generates, at the generating rate,
sleep tasks with the time length, and injects the generated

20

25

40

45

6

sleep tasks into a traffic of original tasks. The scheduler 202
assigns both the original tasks and the sleep tasks in the global
queue 204 to the processors 201.

The architecture of the conventional system software must
be changed slightly. Two designs, i.e., distributed queue
architecture (FIG. 1) and global queue architecture (FIG. 2),
are provided in the present exemplary embodiment. At least
two components are added to the conventional architectures.
One s a sleep task generator (105in FIG. 1,205 in FIG. 2) and
the other is a measuring and computing component, i.e., a
counting, measuring and calculating (CMC)unit (103 in FIG.
1,203 in FIG. 2). Moreover, the scheduler (104 in FIG. 1, 202
in FIG. 2) should also be enhanced to well deal with both
original tasks and sleep tasks. FIGS. 1 and 2 show the two
kinds of architecture. In FIGS. 1 and 2, the solid lines denote
the task path, and the dashed lines denote the information
collection path.

The multiprocessor system illustrated in FIGS. 1 and 2
operate as described in the following.

Step 1. The CMC units 103 and 203 calculate average
response time of tasks according to a queuing model. For an
application and the system, a queuing model can be estab-
lished. For a long run application, such like a web system or
anetwork switch, the equilibrium must exist and the calcula-
tion can be done.

Step 2. The CMC units 103 and 203 set an acceptable delay
to the average response time of original tasks, and then
according to the model in the first step the new arrival rate of
tasks is obtained.

Step 3. The CMC units 103 and 203 count the number of
tasks arriving at the system within a period of time and mea-
sure the execution times of the finished tasks within the same
period of time (step S501 in FIG. 5). The time period is called
the time window. In the distributed queue architecture, the
CMC unit 103 monitors both the processors 101 and the local
queues 102. In the global queue architecture, the CMC unit
203 monitors both the processors 201 and the global queue
204.

Step 4. According to the new arrival rate from Step 2 and
the data from Step 3, the CMC units 103 and 203 calculate the
generating rate and decide the time lengths of generated sleep
tasks (steps S502 to S505 in FIG. 5). An example of the
calculation is based on a cluster of M/M/1, because only
medium or heavy load is considered in the present invention
and for heavy load a cluster of m processors, each M/M/1, is
almost equal to a system of M/M/m. Assuming that the arrival
rate of original tasks is known to be L1, the average response
time of tasks should be 1/(u-(L.1/m)). Here, u is the service
rate of processors. If the delay of a factor d is allowed and the
new arrival rate is L, following equation holds. d/(u—(I.1/m))
=1/(u—(L/m)). Thus, L can be calculated. The arrival rate of
sleep tasks is denoted as L.2. Then, [.2=[.-1L1. The execution
times of original tasks may not follow an exponential distri-
bution. Thus, the lengths of sleep tasks will be created to fill
this gap. That is, the execution times of both original tasks and
sleep tasks are finally forced to follow an exponential distri-
bution. Moreover, the arrival intervals of tasks are also forced
to follow a certain exponential distribution through adjusting
injection time of sleep tasks.

Step 5. The sleep task generators 105 and 205 inject the
generated sleep tasks into the original task traffic (step S506
in FIG. 5). Then, the traffic of tasks w HI be regulated to meet
the previously established model.

Step 6. The schedulers 104 and 202 assign the original
tasks and the sleep tasks in terms of a certain scheduling
algorithm. Two scheduling algorithms, FIG. 3 and FIG. 4, are
provided in the present exemplary embodiment, respectively,

US 9,323,319 B2

7

for the distributed queue architecture and the global queue
architecture. Both the two scheduling algorithms aim at
avoiding unnecessary state transfers.

A variant of the scheduling algorithms exists. In such a
variant, a parameter is defined to be the latest time in which
the processor state can be changed. In other words, the param-
eter defines the longest time in which a processor stays in the
same state.

In the following, the present exemplary embodiment is
described in more detail.

1. The queuing model could be any one from which the
average response time can be modeled. However, with respect
to the complexity of computation, a cluster of M/M/1 is
chosen because first a cluster of M/M/1 queues is equivalent
to an M/M/m queuing system, second the injection of sleep
tasks can force the arrival intervals and execution time of
tasks to follow a certain exponential distribution. The com-
putation based on a cluster of M/M/1 queues is much simpler
than others.

2. The average response time of the original systems and
applications is assumed to be known beforehand. If the origi-
nal average response time is unknown, a series of measure-
ments should be done to fit the models and compute the
average response time.

3. In the distributed queue architecture in FIG. 1, the CMC
unit 103 keeps monitoring the processors 101 and the local
queues 102 to count the number of tasks in the systems and
the execution times of tasks. In the global queue architecture
in FIG. 2, the CMC unit 203 keeps monitoring the processors
201 and the global queue 204. A time period, a window, is set.
The number of tasks within the window and the execution
times of tasks are used to compute the arrival rate and the
average execution time of tasks, which will be used in decid-
ing the rate of generating sleep tasks and the time lengths of
sleep tasks. As time goes on, the window is also moved to
catch up with the current time.

4. The schedulers 104 and 202 treat the injected tasks in the
same manner as the original tasks. In each processor, if the
previously finished task is a sleep task, the processor will still
be in “off” state until an original task arrives, and vice versa.

5. The sleep task generators 105 and 205 calculate the
generating time and the time length of the next sleep task in
terms of the results from the CMC units 103 and 203.

6. The scheduling algorithms for distributed queue archi-
tecture and global queue architecture are instanced, respec-
tively, in FIGS. 3 and 4.

(1) Both of the two algorithms are event-driven. An event
trigger is built in the algorithms, i.e., steps S301 and S401.

(2) Two kinds of events are recognized in steps S302 and
S402 to decide the following behaviors of the algorithms.

(3) For distributed queue architecture, whether a processor
is going to be empty is the key to decide task assignment as in
steps S303 and S304.

(4) The algorithms always try to send the earliest tasks to
empty processors such like in steps S306, S310, S408, and
S409.

(5) The algorithms always try to send the tasks of the same
type as the previously finished ones to avoid unnecessary state
transfer such as in steps S308, S311, and S407.

(6) The algorithm for distributed queue architecture tries to
maintain a certain load balancing such as in steps S308 and
S309.

With reference to FIG. 3, in the distributed queue architec-
ture, the scheduler 104 waits a task event step S301). If a new
task arrives (A in step S302), the scheduler 104 determines
whether a processor P is empty or not (step S303). If the
processor P is empty (Y in step S303), the scheduler 104

10

15

20

25

30

35

40

45

50

55

60

65

8

sends the new task to the processor P (step S306). If the
processor P is not empty (N in step S303), the scheduler 104
determines whether the last task in a queue Q is of the same
type with the new task (step S305). If the last task in the queue
Q is of the same type with the new task (Y in step S305), the
scheduler 104 sends the new task to the queue Q (step S308).
If the last task in the queue Q is not of the same type with the
new task (N in step S305), the scheduler 104 sends the new
task to the shortest queue (step S309).

If a task departs from a processor P (D in step S302), the
scheduler 104 determines whether the processor P is empty or
not (step S304). If the processor P is empty (Y in step S304),
the scheduler 104 determines whether there is a task T of the
same type with the departing task in other queues (step S307).
Ifthereisthetask T (Y instep S307), the scheduler 104 moves
the task T to the processor P (step S311). If there in not the
task T (N in step S307), the scheduler moves the earliest task
from other queues to the processor P (step S310).

With reference to FIG. 4, in the global queue architecture,
the scheduler 202 waits a task event (step S401). If a task T
departs (D in step S402), i.e., a processor P finishes a task T
(step S403), the scheduler 202 determines whether there is a
task T' of the same type with the task T in the global queue 204
(step S405). If there is the task T' (Y in step S405), the
scheduler 202 sends the task T' to the processor P (step S407).
If there is not the task T' (N in step S405), the scheduler 202
sends the earliest task. in the global queue 204 to the proces-
sor P (step S408).

If a new task T arrives (A in step S402, S404), i.e., the
scheduler 202 determines whether a processor P is empty or
not (step S406). If the processor P is empty (Y in step S406),
the scheduler 202 sends the task T to the processor P (step
S409). If the processor P is not empty (N in step S406), the
scheduler 202 attaches the task T to the tail of the global queue
204 (step S410).

7. The mechanism of generating and injecting sleep tasks is
shown in FIG. 5. The CMC units 103 and 203 performs from
step S501 to step S504, while the sleep task generators 105
and 205 perform step S505.

One of the differences of the present invention from the
conventional techniques is that the amount of the time of
switching processors off is decided in advance and then the
time slots, the sleep tasks, are co-scheduled along with the
original tasks. In the conventional techniques, when and how
long to switch processor off is decided at the current time
instant.

The advantageous effects of the exemplary embodiment
are summarized in the following, but not restricted thereto.

1. The multiprocessor system according to the present
exemplary embodiment is more reliable than the conven-
tional techniques, because generation of sleep tasks will force
the arrival rate and the execution time of all tasks to meet the
selected queuing model, no matter which model is consid-
ered. Thus, the calculation based on the model must be more
accurate. In other words, the average response time of all
tasks can be known accurately.

2. The multiprocessor system according to the present
exemplary embodiment is simpler than the other conven-
tional systems. The calculation is based on a selected queuing
model and there is no need to adopt more complex calcula-
tions. The extra operations, such as generating sleep tasks and
scheduling the sleep tasks, are not difficult to implement.

3. The scheduling of tasks tries to combine sleep tasks to
run together, and thus to avoid unnecessary state transfer.

Variations and adjustments of the exemplary embodiment
are possible within the scope of the overall disclosure (includ-
ing claims) of the present invention and based on the basic

US 9,323,319 B2

9

technical concept of the invention. Various combinations and
selections of various disclosed elements are possible within
the scope of the claims of the present invention. That is, the
present invention of course includes various variations and
modifications that could be made by those skilled in the art
according to the overall disclosure including the claims and
the technical concept.

101 processor(s)

102 local queues

103 counting, measuring, and calculating (CMC) unit

104 scheduler

105 sleep task generator

201 processor(s)

202 scheduler

203 counting, measuring, and calculating (CMC) unit

204 global queue

205 sleep task generator

What is claimed is:

1. A multiprocessor system comprising:

a plurality of processors;

a counting, measuring and calculating (CMC) unit that deter-
mines a generating rate of sleep tasks and a time length of
each of the sleep tasks based on an acceptable delay;

asleep task generator that generates the sleep tasks with the

time length at the generating rate, and injects the gener-
ated sleep tasks into a traffic for original tasks; and
ascheduler that assigns both the original tasks and the sleep
tasks in the traffic to the plurality of processors, wherein
each of the sleep tasks switches off one of the plurality of
processors, on which the sleep task is assigned.

2. The multiprocessor system according to claim 1,
wherein the CMC unit determines the generating rate and the
time length so that inter-arrival times and execution times of
both the original tasks and the sleep tasks follow predeter-
mined distributions for a queuing model.

3. A multiprocessor system according to claim 1, wherein
the CMC unit determines the acceptable delay in accordance
with an average response time of the original tasks.

4. The multiprocessor system according to claim 1,
wherein the scheduler tries to reduce transitions of the plu-
rality of processors between an on state and an off state.

5. The multiprocessor system according to claim 1,
wherein the sleep tasks are virtual tasks that do nothing but
switch off one of the plurality of processors, on which the
sleep task is assigned; and

the sleep tasks have the same statistics as the original tasks.

6. The multiprocessor system according to claim 1, further
comprising a plurality of local queues, each local queue holds
at least part of the original tasks and the sleep tasks.

7. The multiprocessor system according to claim 6,
wherein, if there is an empty processor in the plurality of
processors, the scheduler sends a new task to the empty pro-
cessor; and if there is no empty processor in the plurality of
processors, the scheduler sends the new task to one of the
plurality of local queues, in which the last task is of the same
type with the new task.

10

15

20

25

30

35

40

45

50

55

10

8. The multiprocessor system according to claim 1, further
comprising a global queue that holds the original tasks and the
sleep tasks.

9. The multiprocessor system according to claim 8,
wherein, if a task is finished in one of the plurality of proces-
sors, the scheduler sends to the processor the earliest task of
the same type in the global queue.

10. The multiprocessor system according to claim 1,
wherein the CMC unit measures execution time of finished
original tasks, counts the number of the original tasks and
calculates an arrival rate and a distribution of the original
tasks within a period of time.

11. The multiprocessor system according to claim 1,
wherein the CMC unit determines the generating rate so that
the inter-arrival time of both the original tasks and the sleep
tasks to follow a predetermined distribution.

12. The multiprocessor system according to any claim 1,
wherein the CMC unit determines the generating rate of the
sleep tasks in accordance with a measurement result of an
arrival rate of the original tasks.

13. The multiprocessor system according to claim 1,
wherein the CMC unit determines the time length of the sleep
tasks in accordance with a measurement result of the recently
finished tasks.

14. A method of saving energy in a multiprocessor system
comprising:

determining a generating rate of sleep tasks and a time

length of each of the sleep tasks based on an acceptable

delay;

generating the sleep tasks with the time length at the
generating rate;

injecting the generated sleep tasks into a traffic for origi-
nal tasks; and

assigning both the original tasks and the sleep tasks in
the traffic to a plurality of processors, wherein

each ofthe sleep tasks switches off one of the plurality of
processors, on which the sleep task is assigned.

15. The method of saving energy in a multiprocessor sys-
tem according to claim 14, wherein the generating rate and
the time length are determined so that inter-arrival times and
execution times of both the original tasks and the sleep tasks
follow predetermined distributions for a queuing model.

16. The method of saving energy in a multiprocessor sys-
tem according to claim 14, further comprising determining
the acceptable delay in accordance with an average response
time of the original tasks.

17. The method of saving energy in a multiprocessor sys-
tem according to claim 14, further comprising trying to
reduce transitions of the plurality of processors between an on
state and an off state.

18. The method of saving energy in a multiprocessor sys-
tem according to claim 14, wherein the sleep tasks are virtual
tasks that do nothing but switch off one of the plurality of
processors, on which the sleep task is assigned; and

the sleep tasks have the same statistics as the original tasks.

#* #* #* #* #*

